Dissipative and coupling effects accompanying the natural rubber elongation

نویسنده

  • B. Wattrisse
چکیده

Rubber-like materials can undergo very large strains in a quasi-reversible way. This remarkable behavior is often called hyper (or entropic) elasticity. However, the presence of mechanical loops during a load-unload cycle is not consistent with a purely elastic behavior modeling. Using Digital Image Correlation and Infra-Red Thermography, the present study aims at observing and quantifying dissipative and coupling effects during the deformation of natural rubber at different elongation ratios. For elongation ratios less than 2, the famous thermo-elastic inversion is revisited within the framework of the irreversible processes thermodynamics, and interpreted as a competition between two coupling mechanisms. For elongation of about 3 or 4, the predominance of entropic elasticity is shown and the relevance of the analogy with perfect gases, at the root of its definition, is energetically verified. For very large elongation ratios (about 5), the energy effects associated with stress-induced crystallization-fusion mechanisms are underlined. The current experiments, performed at relatively slow strain rate, did not exhibit any significant dissipation. Introduction In the literature, the first experimental studies on natural rubber were performed by Gough in the early 19 century [1]. They evidenced the coupled nature of its thermo-mechanical behavior. The experiments were resumed later by Joule [2] who observed that the straining of a vulcanized rubber generated a cooling of the specimen for small elongations, followed by a warming for higher elongations. He also noticed that the thermal expansion coefficient changes its sign – from positive to negative – with the increasing applied stress. This change of sign has since been associated with the so-called thermo-elastic inversion mechanism. This inversion phenomenon has been thoroughly studied by numerous authors (e.g. [3, 4]), and modeled within the framework of finite non-linear thermo-elasticity (e.g. [5,6]). We have recently proposed to override the hypothesis of pure thermo-elasticity to interpret this inversion phenomenon as the result of the competition between two concurrent coupling effects: a standard thermo-elastic effect (associated with the classical thermo-dilatation of materials), and a rubber effect (similar to perfect gas effect). At the micro scale, the macromolecular approach indeed highlights the very high mobility of the rubber molecular chains. Various experiments [2, 7] showed that the elasticity of this material was due to the entropy variation of the molecular chains network. They also suggested that the coupling mechanism was associated with the unfolding of the chains. The macromolecular approach is classically integrated within the statistical thermodynamics framework, and more specifically within the kinetic theory of gases. Using this analogy, which is the basis of “entropic elasticity” or “rubber elasticity”, one can demonstrate that the stress is proportional to the temperature, and that the internal energy depends only of the temperature (as a perfect gas) [4]. These results imply that the deformation energy developed by the material is totally transformed into heat [8, 9]. Numerous models were proposed in order to predict the mechanical behavior of rubber ha l-0 08 36 19 6, v er si on 1 20 J un 2 01 3 Author manuscript, published in "SEM2011, Uncasville : United States (2011)"

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Different Fillers on Natural Rubber Composites to Assess Mechanical Performance

Effect of different fillers on natural rubber compounds was investigated through curing, mechanical properties and morphology studies for improving mechanical performance of rubber articles. In this work, natural rubber blends with Silica as Single-filler compounds, and blends with Silica and Carbon black as Bi-filler compounds were considered. Then, natural rubber blends with Silica, Carbon bl...

متن کامل

Fatigue Life, Morphological Studies, and Thermal Aging of Rattan Powder-filled Natural Rubber Composites as a Function of Filler Loading and a Silane Coupling Agent

Fatigue life, morphological studies, and thermal aging properties of rattan powder-filled natural rubber (NR) composites were investigated as a function of filler loading and a silane coupling agent. NR composites were prepared by the incorporation of rattan powder in the range of 0 to 30 phr into a NR matrix with a laboratory size two roll mill. Thermal aging was carried out for 7 and 14 days ...

متن کامل

Factors That Affect the Fatigue Life of Rubber: a Literature Survey

Many factors are known to influence the mechanical fatigue life of rubber components. Four major categories of factors are reviewed here: the effects of mechanical loading history, environmental effects, effects of rubber formulation, and effects due to dissipative aspects of the constitutive response of rubber. For each category, primary factors are described, and existing literature is presen...

متن کامل

The Cyclization of Natural Rubber

The effects of solvent, temperature, time, weight percent of catalyst on the rate and mechanism of cyclization of natural rubber (NR) was studied in toluene and xylene solutions having tin tetra chloride catalyst (SnCl4). Iodometric titration show, with 8% SnCl4 (based on polymer weight) cyclization occurs, leaving 27.4% of the total unsaturation. Infrared spectra of c...

متن کامل

Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation

The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013